
International Journal of Industry and Sustainable Development (IJISD)

Volume 1, No. 2, PP. 76-84, July 2020, ISSN 2682-4000

Presented in 46th International Conference of (AEAS), Cairo, Egypt, Dec. 24-26, 2019.

 http://ijisd.journals.ekb.eg 76

Exact Minimum Lower Bound Algorithm for Traveling

Salesman Problem

Mohamed Eleiche*

Faculty of Engineering, Egyptian Russian University, Cairo, Egypt

*
 Corresponding author: mohamed.eleiche@gmail.com

Abstract

The Traveling Salesman Problem (TSP) is defined by a given finite number of (n) cities along with the

cost of travel between each pair of them. It is required to find the tour with least cost to visit all of the cities and

returning to the starting point. Each city has to be visited once and only once. The TSP has direct applications in

many engineering disciplines such as telecommunications, electricity, and a lot of network applications. It has

high importance in Geoinformatics as it mathematically model the networks and infrastructures. This research

presents the Minimum-Travel-Cost Algorithm for computing an exact lower bound for the general case of the

(TSP). Although the TSP does not have yet an exact algorithm to determine its optimal path, this algorithm can

help on identifying a minimal threshold that the exact unknown cost will exceed. The minimum-travel-cost

algorithm is a dynamic programming algorithm to compute an exact and deterministic lower bound for the

general case of the traveling salesman problem (TSP). The algorithm is presented with its mathematical proof

and asymptotic analysis. It has a (n2) complexity. A program is developed for the implementation of the

algorithm and successfully tested among well known TSP problems and the results were consistent.

Key words: traveling salesman problem (TSP); graph theory; network analysis.

1- Introduction

The Traveling Salesman Problem (TSP) is defined by a given finite number of (n)

cities along with the cost of travel between each pair of them. It is required to find the tour

with least cost to visit all of the cities and returning to the starting point. Each city has to be

visited once and only once (Applegate, et al. 2006). The travel costs are asymmetric in the

sense that traveling from city a to city b does not cost the same as traveling from b to a. It is

mathematically presented as a full graph with (n) nodes. The TSP has direct applications in

many engineering disciplines such as telecommunications, electricity, and a lot of network

applications. It has high importance in Geoinformatics as it mathematically model the

networks and infrastructures (Eleiche and Markus 2010). In some cases, the length of edges is

computed by geodesy as curved lines on the surface of reference ellipsoid. TSP is a prototype

of hard combinatorial optimization problem where the possible solutions are (n-1)! and is

considered NP-hard and NP-complete (Jungnickel 2008). This important problem does not

have yet (2020) an exact deterministic algorithm to compute its optimal circuit.

The purpose of this research is to compute a minimum bound of the TSP in an exact

algorithm for the general case of the problem which is asymmetrical data where

cost(u,i)≠cost(i,u). The mathematical and asymptotic analysis of the algorithm are presented.

http://ijisd.journals.ekb.eg/
mailto:mohamed.eleiche@gmail.com

International Journal of Industry and Sustainable Development (IJISD)

Volume 1, No. 2, PP. 76-84, July 2020, ISSN 2682-4000

http://ijisd.journals.ekb.eg 77

2- Mathematical Formulation

The TSP is composed of a weighted complete directed graph G = (V, E), where (V)

are the nodes with size (n), and (E) are the edges with size (n2). V = {1, 2, …, n}, and 𝐸 =

{(𝑢, 𝑣)| 𝑢, 𝑣 ∈ 𝑉} 𝑎𝑛𝑑 {𝑐𝑜𝑠𝑡(𝑢, 𝑣) ∈ ℝ ≥ 0} (Bondy and Murty 1976). The graph with

edges of negative cost is beyond the scope of this research.

A. Cost Array

The input data are stored in the cost array. It has the format [u, v, cost(u,v)], where (u) is the

from-node of the edge, (v) is the to-node of the edge, and (cost(u,v)) is the distance of the

edge. The data type of (u) and (v) is integer, while (cost) is a positive real number and may

equals to zero. The cost array has a size of (3 n2) and its structure is shown in Table 1. It has a

single row for each edge (u,v).

Table 1. The structure of input cost array

B. Minimum Travel Array

The Minimum-Travel-Array is the main output of this algorithm. Its structure is [InCost, u, i,

v, OutCost], where (InCost) is the cost of the edge (u,i), (u) is the incident node to node (i), (i)

is the node of interest (1 ≤ i ≤ n), (v) is the outgoing node from node (i), and (OutCost) is

the cost of the edge (i,v). The size of the Minimum-Travel-Array is (5n) (Eleiche, Markus

2010), and Table 2 shows its structure.

Table 2. Minimum Travel Array

InCost u i v OutCost

… … 1 … …

InCost u i v OutCost

… … n … …

3- Hypothesis

The idea of this solution is to divide the problem into two main subproblems, incident

side and outgoing side. The incident side is where the node (i) is the arrival destination from

another node (u) with the minimal arrival cost (InCost1). The outgoing side is to depart from

u

(from-node)

v

(to-node)
Cost

1 1 ∞

… … …

1 n …

2 1 …

2 2 ∞

… … …

n n ∞

http://ijisd.journals.ekb.eg/

International Journal of Industry and Sustainable Development (IJISD)

Volume 1, No. 2, PP. 76-84, July 2020, ISSN 2682-4000

http://ijisd.journals.ekb.eg 78

the node (i) to another node (v) with the minimal departure cost (OutCost1), as shown in Fig.

1. This is traveling to and from node (i) with the minimal cost. It is not possible to travel

through node (i) with a cost less than (𝑚𝑖𝑛𝐶𝑜𝑠𝑡 = 𝐼𝑛𝐶𝑜𝑠𝑡 + 𝑂𝑢𝑡𝐶𝑜𝑠𝑡) , as shown in

equation (1). This is a direct and simple selection application for the minimal cost value from

each side.

Fig. 1. Incident and outgoing nodes for node (i).

𝐼𝑛𝐶𝑜𝑠𝑡1 = 𝐸(𝑢, 𝑖) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡, 𝐸(𝑢, 𝑖) = min 𝐸([1, 𝑛], 𝑖)

𝑂𝑢𝑡𝐶𝑜𝑠𝑡1 = 𝐸(𝑖, 𝑣) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡, 𝐸(𝑖, 𝑣) = min E(𝑖, [1, 𝑛])

min 𝑇𝑟𝑎𝑣𝑒𝑙 𝐶𝑜𝑠𝑡 𝑓𝑜𝑟 𝑛𝑜𝑑𝑒 (𝑖) = 𝑚𝑖𝑛𝐶𝑜𝑠𝑡 = 𝐼𝑛𝐶𝑜𝑠𝑡1 + 𝑂𝑢𝑡𝐶𝑜𝑠𝑡1

(1)

A. Prevent Loop Condition

In some cases, we find that node (u) = node (v), same node has the minimum cost to arrive to

node (i) and to depart from it, this is not allowed by the definition of TSP, which states that

each node is visited only once (Eleiche 2015). In such case, another computation is required.

We select the second node (u2), from incident side, such that it has the second minimum cost

(InCost2) to arrive to node (i). Similarly, the node (v2) from outgoing side has the second

minimum cost (OutCost2) to depart from node (i), as shown in Fig. 2. It is worth to note that

although node (u) = node (v) = node (a), however, InCost1 ≠ OutCost1, as the problem is not

symmetrical. The computation of (minCost) is shown in equation (2).

Fig. 2. Second minimum cost for Node (i).

http://ijisd.journals.ekb.eg/

International Journal of Industry and Sustainable Development (IJISD)

Volume 1, No. 2, PP. 76-84, July 2020, ISSN 2682-4000

http://ijisd.journals.ekb.eg 79

𝐼𝑛𝐶𝑜𝑠𝑡2 = 𝐸(𝑢2, 𝑖) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡,

𝐸(𝑢2, 𝑖) = min 𝐸([1, 𝑛], 𝑖) && (𝐸(𝑢2, 𝑖) ≥ 𝐸(𝑢, 𝑖))

𝑂𝑢𝑡𝐶𝑜𝑠𝑡2 = 𝐸(𝑖, 𝑣2) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

𝐸(𝑖, 𝑣2) = min E(𝑖, [1, 𝑛]) && (𝐸(𝑖, 𝑣2) ≥ 𝐸(𝑖, 𝑣))

𝑚𝑖𝑛𝐶𝑜𝑠𝑡 = 𝑚𝑖𝑛 {

(𝐼𝑛𝐶𝑜𝑠𝑡1 + 𝑂𝑢𝑡𝐶𝑜𝑠𝑡2), 𝐼𝑛𝑐𝑜𝑠𝑡 = 𝑖𝑛𝑐𝑜𝑠𝑡1, 𝑂𝑢𝑡𝐶𝑜𝑠𝑡 = 𝑂𝑢𝑡𝐶𝑜𝑠𝑡2
(𝐼𝑛𝐶𝑜𝑠𝑡2 + 𝑂𝑢𝑡𝐶𝑜𝑠𝑡1), 𝐼𝑛𝑐𝑜𝑠𝑡 = 𝑖𝑛𝑐𝑜𝑠𝑡2, 𝑂𝑢𝑡𝐶𝑜𝑠𝑡 = 𝑂𝑢𝑡𝐶𝑜𝑠𝑡1
(𝐼𝑛𝐶𝑜𝑠𝑡2 + 𝑂𝑢𝑡𝐶𝑜𝑠𝑡2), 𝐼𝑛𝑐𝑜𝑠𝑡 = 𝑖𝑛𝑐𝑜𝑠𝑡2, 𝑂𝑢𝑡𝐶𝑜𝑠𝑡 = 𝑂𝑢𝑡𝐶𝑜𝑠𝑡2

(2)

B. Exact Minimum Bound for TSP

Let CTSP be the required cost for optimal circuit which is unknown, and CminBound is an exact

minimum bound for TSP, such that (CminBound ≤ CTSP) is shown in equation (3).

𝐶𝑚𝑖𝑛𝐵𝑜𝑢𝑛𝑑 = 𝑚𝑎𝑥

{

 ∑𝐼𝑛𝐶𝑜𝑠𝑡

𝑛

1

∑𝑂𝑢𝑡𝐶𝑜𝑠𝑡

𝑛

1

 (3)

The exact minimum bound CminBound equals to the higher value from (∑ 𝐼𝑛𝐶𝑜𝑠𝑡𝑛
1) and

(∑ 𝑂𝑢𝑡𝐶𝑜𝑠𝑡𝑛
1), which are the summation of the cost of incident edges and outgoing edges

respectively from the Minimum-Travel-Array in Table 2.

4- Mathematical Proof

The Minimum-Travel-Array stores the minimum exact cost to pass through each node,

and by summation of costs from both sides, exact minimum bound for the TSP is computed.

Let us consider the TSP_Array is similar in structure to the Minimum-Travel-Array, and it

contains the required solution for TSP, so that (CTSP) is the required cost for optimal circuit,

Cin(i) and Cout(i) are the cost of incident edge and outgoing edge to node (i) in optimal

solution, as shown in Table 3.

Table 3. The structure of TSP_Array (optimal solution)

Cin u i v Cout

… … 1 … …

Cin u i v Cout

… … n … …

In case of the optimal solution, the following equation (4) is applied

𝐶𝑇𝑆𝑃 = ∑𝐶𝑖𝑛(𝑖)

𝑛

1

 = ∑𝐶𝑜𝑢𝑡(𝑖)

𝑛

1

 (4)

Let us consider the following simple mathematical rule, Consider that : (C = a), as shown in

equation (5):

C = 𝑎 = 𝑎 + (𝑏 − 𝑏) (𝑤ℎ𝑒𝑟𝑒 {(𝑎, 𝑏, 𝐶) ∈ ℝ ≥ 0 𝑎𝑛𝑑 𝑎 ≥ 𝑏 }

C = 𝑎 = (𝑎 − 𝑏) + 𝑏 {(𝑎 − 𝑏) ≥ 0 } , then

C ≥ 𝑏

(5)

In the previous example, (C) is the required cost for the minimum cycle (CTSP) and it is

http://ijisd.journals.ekb.eg/

International Journal of Industry and Sustainable Development (IJISD)

Volume 1, No. 2, PP. 76-84, July 2020, ISSN 2682-4000

http://ijisd.journals.ekb.eg 80

unknown, and it equals to the quantity (a). The quantity (b) is the sum of the minimum travel

cost for each vertex (CminBound) and it is a known quantity. It is evident that both {(𝑎, 𝑏) ≥

0 𝑎𝑛𝑑 𝑎 ≥ 𝑏 } by adding and subtracting (b) still the equation is valid, and still (a-b) is

unknown but {(𝑎 − 𝑏) ≥ 0}. This means that (C) must be greater than (or equal) to (b). By

applying this concept to the minimum travel cost and assuming that the TSP_Array in Table

3 represents the tour of least cost, then as shown in equation (6),

𝐶𝑇𝑆𝑃 = ∑𝐶𝑖𝑛(𝑖)

𝑛

1

 = ∑(𝐶𝑖𝑛(𝑖) − 𝐼𝑛𝐶𝑜𝑠𝑡

𝑛

1

) + ∑𝐼𝑛𝐶𝑜𝑠𝑡

𝑛

1

𝐶𝑇𝑆𝑃 = ∑𝐶𝑜𝑢𝑡(𝑖)

𝑛

1

 = ∑(𝐶𝑜𝑢𝑡(𝑖) − 𝑂𝑢𝑡𝐶𝑜𝑠𝑡

𝑛

1

) + ∑𝑂𝑢𝑡𝐶𝑜𝑠𝑡

𝑛

1

𝐶𝑇𝑆𝑃 ≥ ∑ 𝐼𝑛𝐶𝑜𝑠𝑡 ≥ 0 𝑛
1

𝐶𝑇𝑆𝑃 ≥ ∑ 𝑂𝑢𝑡𝐶𝑜𝑠𝑡𝑛
1 ≥ 0

𝐶𝑚𝑖𝑛𝐵𝑜𝑢𝑛𝑑 = 𝑚𝑎𝑥

{

 ∑𝐼𝑛𝐶𝑜𝑠𝑡

𝑛

1

∑𝑂𝑢𝑡𝐶𝑜𝑠𝑡

𝑛

1

(6)

In the equation (6), for each vertex (i), the minimum incident cost (𝐼𝑛𝐶𝑜𝑠𝑡) was added and

subtracted, which does not change the value of the equation. Then, the value of the incident

cost to the vertex (i) from minimum cycle (𝐶𝑖𝑛) is represented as the known minimum

incident cost (𝐼𝑛𝐶𝑜𝑠𝑡) in addition to another quantity (𝐶𝑖𝑛 − 𝐼𝑛𝐶𝑜𝑠𝑡). It is evident that the

quantity (𝐶𝑖𝑛) is unknown, while the other quantity (𝐼𝑛𝐶𝑜𝑠𝑡) is well known.

It is evident that the Minimum-Travel-Array does not represent the required least tour for

TSP, and many nodes will have travel cost higher than their minimum-travel-cost within the

least tour. However, the Minimum-Travel-Array is important characteristic for the TSP, and

provides exact minimum bound that the least cost will exceed.

A. Algorithm of Minimum Bound for TSP and Main Results

The pseudo code of the algorithm

Input: A weighted complete directed graph G = (V, E), where V = {1, 2, …, n}, and 𝐸 = {(𝑢, 𝑣)| 𝑢, 𝑣 ∈

𝑉} 𝑎𝑛𝑑 {𝑐𝑜𝑠𝑡(𝑢, 𝑣) ∈ ℝ} such that { 𝑐𝑜𝑠𝑡(𝑢, 𝑣) ≥ 0} and 𝑐𝑜𝑠𝑡(𝑢, 𝑣) ≠ 𝑐𝑜𝑠𝑡(𝑣, 𝑢)

Output: The minimum travel cost array for each vertex and the minimum lower bound for the cost to visit

each vertex in V only once.

1. Class MinTravel{InCost, From_Node, Node_ID, To_Node , OutCost}

2. For each vertex i ∈ V

3. MinTravel[i,3] ← i

4. MinTravel[i,2] ← u of minimum cost of E’ = {(u, i)|u ∈ V}

5. MinTravel[i,1] ← minimum cost of E’ = {(u, i)|u ∈ V}

6. MinTravel[i,4] ← v of minimum cost of E’’ = {(i, v)|v ∈ V}

7. MinTravel[i,5] ← minimum cost of E’’ = {(i, v)|v ∈ V}

8. if (MinTravel[i,2] == MinTravel[i,4]) then Prevent(i)

9. TSPLowerBound()

http://ijisd.journals.ekb.eg/

International Journal of Industry and Sustainable Development (IJISD)

Volume 1, No. 2, PP. 76-84, July 2020, ISSN 2682-4000

http://ijisd.journals.ekb.eg 81

Procedure Prevent(i)

1. InCost2 ← 𝑠𝑒𝑐𝑜𝑛𝑑min 𝑐𝑜𝑠𝑡 𝐸′ = {(u2, i)|u2 ∈ V && u2 ≠ MinTravel[i, 2]}

2. 𝑢2 ← 𝑢2 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 min 𝑐𝑜𝑠𝑡 𝐸′ = {(u2, i)|u2 ∈ V && u2 ≠ MinTravel[i, 2]}

3. OutCost2 ← 𝑠𝑒𝑐𝑜𝑛𝑑min 𝑐𝑜𝑠𝑡 𝐸" = {(i, v2)|v2 ∈ V && v2 ≠ MinTravel[i, 4]}

4. 𝑣2 ← 𝑣2 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 min 𝑐𝑜𝑠𝑡 𝐸" = {(i, v2)|v2 ∈ V && v2 ≠ MinTravel[i, 4]}

5. C1 = MinTravel[i,1] + OutCost2

6. C2 = InCost2 + MinTravel[i,5]

7. C3 = InCost2 + OutCost2

8. C = min[C1, C2, C3]

9. Case (1): C = C1

10. MinTravel[i,4] ← v2

11. MinTravel[i,5] ← OutCost2

12. Case (2): C = C2

13. MinTravel[i,2] ← u2

14. MinTravel[i,1] ← InCost2

15. Case (3): C = C3

16. MinTravel[i,2] ← u2

17. MinTravel[i,1] ← InCost2

18. MinTravel[i,4] ← v2

19. MinTravel[i,5] ← OutCost2

Procedure TSPLowerBound

1. for i← 1 to n

2. Sum_in = Sum_in + MinTravel [i,1]

3. Sum_out = Sum_out + MinTravel [i,5]

4. If (Sum_in > Sum_out)

5. then TSPLowerBound = Sum_in

6. else TSPLowerBound = Sum_out

B. Main Results

A C++ program was implemented for this algorithm to test its validity among some TSP

problems with (best) known solutions. The TSPLIB website provides sample TSP problems

with best known solutions (http://www.math.uwaterloo.ca/tsp/problem/outlinks.html , May

2020) in order to test the validity of proposed solutions for this interesting problem. This

program tested three problems which are (br17, ry48p, ft53) from TSPLIB, and a fourth

problem is defined at (http://www.math.uwaterloo.ca/tsp/college/).

Table 4. Applications of algorithm

Problem Name Size (n)
Best known

solution
Incident Cost Outgoing Cost

Lower

Bound

br17 17 39 0 24 24

ry48p 48 14422 12987 11964 12987

ft53 53 6905 3580 3989 3989

College 647 647 47,149,705 25,615,500 42,777,207 42,777,207

As shown in Table 4, all the four tested problems had the computed lower bound less than

best-known-solution. This test prove practically the validity of the algorithm.

http://ijisd.journals.ekb.eg/
http://www.math.uwaterloo.ca/tsp/problem/outlinks.html
http://www.math.uwaterloo.ca/tsp/college/

International Journal of Industry and Sustainable Development (IJISD)

Volume 1, No. 2, PP. 76-84, July 2020, ISSN 2682-4000

http://ijisd.journals.ekb.eg 82

C. Algorithm Classification

The Minimum Travel Cost Algorithm for the Traveling Salesman Problem has the following

characteristics:

1) It divides the problem into two separate subproblems: incident side and outgoing side,

solving each one separately.

2) The algorithm is recursive, it computes the minimum incident and outgoing cost for

each node.

3) It has iterative part, in which for each node the minimum cost is computed for the

whole problem.

4) It memorizes the output for each step for further use.

From the above characteristics, the algorithm can be classified as Dynamic Programming

(DP) algorithm (Bertsekas 2005).

D. Asymptotic Analysis of the Algorithm

The main function finds the minimum travel cost for each node in the TSP. The highest

complexity is for the selection of the minimum (incident/outgoing) cost which runs (n-1) time

for each node, making it (n(n-1)) for each side, as shown in Table 5. The Prevent(i) function

is executed only when both incident and outgoing nodes are the same. This can never happen

in best condition and can appear at each node in worst condition.

Table 5. Asymptotic analysis of main function

Whole

Problem

Each

Node
Function Complexity

Yes Yes MinTravel[i,3] ← i n

Yes Yes
MinTravel[i,2] ← u of minimum cost of E’ =

{(u, i)|u ∈ V}
n

Yes Yes
MinTravel[i,1] ← minimum cost of E’ = {(u, i)|u ∈

V}
n(n-1)

Yes Yes
MinTravel[i,4] ← v of minimum cost of E’’ =

{(i, v)|v ∈ V}
n

Yes Yes
MinTravel[i,5] ← minimum cost of E’’ = {(i, v)|v ∈

V}
n(n-1)

Yes Yes if (MinTravel[i,2] == MinTravel[i,4]) n

May be May be Prevent(i)

Worst condition =

(n* (n-2))

Best Condition = 0

no no TSPLowerBound() n

http://ijisd.journals.ekb.eg/

International Journal of Industry and Sustainable Development (IJISD)

Volume 1, No. 2, PP. 76-84, July 2020, ISSN 2682-4000

http://ijisd.journals.ekb.eg 83

1) Prevent(i) asymptotic analysis: This function computes the second minimum cost for

each node (Kavitha, et al. 2008). Similarly to main function, the minimum second

cost is preformed (n-2) times, as shown in Table 6Table 6.

Table 6. Asymptotic analysis for Prevent(i) function

Each

Node
Function Complexity

Yes
InCost2 ← 𝑠𝑒𝑐𝑜𝑛𝑑 min 𝑐𝑜𝑠𝑡 𝐸′ = {(u2, i)|u2 ∈ V && u2

≠ MinTravel[i, 2]}
n-2

Yes
𝑢2 ← 𝑢2 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑min 𝑐𝑜𝑠𝑡 𝐸′ = {(u2, i)|u2 ∈ V && u2

≠ MinTravel[i, 2]}
1

Yes
OutCost2 ← 𝑠𝑒𝑐𝑜𝑛𝑑 min 𝑐𝑜𝑠𝑡 𝐸" = {(i, v2)|v2 ∈ V && v2

≠ MinTravel[i, 4]}
n-2

Yes
𝑣2 ← 𝑣2 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑min 𝑐𝑜𝑠𝑡 𝐸" = {(i, v2)|v2 ∈ V && v2

≠ MinTravel[i, 4]}
1

2) TSPLowerBound() asymptotic analysis: This function is simple and compute the total

value for the minimum-travel-cost as shown in Table 7Table 7, by direct addition

with cost of (n).

Table 7. Asymptotic analysis for TSPLowerBound() function

Each

Node
Function Complexity

Yes
Sum_in = Sum_in + MinTravel [i,1]

n

Yes
Sum_out = Sum_out + MinTravel [i,5]

n

3) The asymptotic analysis of the algorithm: The algorithm highest complexity functions

are the selection of minimum cost with complexity of O(n(n-1)) and Prevent(i) with

complexity of O(n(n-2)). Then, the algorithm has an overall bound complexity of

O(n2).

5- Conclusion

This research presented the Minimum-Travel-Cost Algorithm for computing an exact

lower bound for the general case of Traveling-Salesman-Problem (TSP). Although the TSP

does not have yet an exact algorithm to determine its optimal path, this algorithm can help on

identifying a minimal threshold that the exact unknown cost will exceed.

It selected the minimum cost to arrive to each node and depart from it. Then, it computed the

sum of the total incident and departure costs. The highest value from both sum is a lower

bound for the problem. The mathematical proof for the algorithm was presented. The

algorithm was implemented into a program and tested among well known cases for existing

problems, and the results were consistent. The algorithm can be classified as dynamic

programming algorithm with complexity of O(n2). It does not solve the Traveling-Salesman-

Problem, however it provides an exact and deterministic lower bound for its general case.

http://ijisd.journals.ekb.eg/

International Journal of Industry and Sustainable Development (IJISD)

Volume 1, No. 2, PP. 76-84, July 2020, ISSN 2682-4000

http://ijisd.journals.ekb.eg 84

References

[1] Applegate, David , Robert Bixby, Vasek Chvátal , and William Cook. The Traveling Salesman Problem:

A Computational Study. Princeton University Press, 2006.

[2] Bertsekas, Dimitri . Dynamic Programming and Optimal Control. Athena : Athena Scientific, 2005.

[3] Bondy, J, and U Murty. Graph Theory with Applications. London: Macmillan, 1976.

[4] Eleiche, Mohamed. "Applying Minimum Travel Cost Approach on 43–Nodes Traveling Salesman

Problem." Pure and Applied Mathematics Journal 4, no. 1 (2015): 9-23.

[5] Eleiche, Mohamed, and Bela Markus. "Applying Minimum Travel Cost Approach On 17–Nodes

Traveling Salesman Problem." Geomatikai Közlemények XIII, no. 2 (2010): 15-22.

[6] Jungnickel, D. " Graphs, Networks, and Algorithms." Springer, 2008: 433-472.

[7] Kavitha, Telikepalli , Kurt Mehlhorn, Dimitrios Michail, and Katarzyna Paluch. "An O(m2n) Algorithm

for Minimum Cycle Basis of Graphs." Algorithmica, 2008: 333–349.

http://ijisd.journals.ekb.eg/

