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Abstract 

The Traveling Salesman Problem (TSP) is defined by a given finite number of (n) cities along with the 

cost of travel between each pair of them. It is required to find the tour with least cost to visit all of the cities and 

returning to the starting point. Each city has to be visited once and only once. The TSP has direct applications in 

many engineering disciplines such as telecommunications, electricity, and a lot of network applications. It has 

high importance in Geoinformatics as it mathematically model the networks and infrastructures. This research 

presents the Minimum-Travel-Cost Algorithm for computing an exact lower bound for the general case of the 

(TSP). Although the TSP does not have yet an exact algorithm to determine its optimal path, this algorithm can 

help on identifying a minimal threshold that the exact unknown cost will exceed. The minimum-travel-cost 

algorithm is a dynamic programming algorithm to compute an exact and deterministic lower bound for the 

general case of the traveling salesman problem (TSP). The algorithm is presented with its mathematical proof 

and asymptotic analysis. It has a (n2) complexity. A program is developed for the implementation of the 

algorithm and successfully tested among well known TSP problems and the results were consistent. 

 

Key words: traveling salesman problem (TSP); graph theory; network analysis. 

 

 

1- Introduction 

The Traveling Salesman Problem (TSP) is defined by a given finite number of (n) 

cities along with the cost of travel between each pair of them. It is required to find the tour 

with least cost to visit all of the cities and returning to the starting point. Each city has to be 

visited once and only once  (Applegate, et al. 2006). The travel costs are asymmetric in the 

sense that traveling from city a to city b does not cost the same as traveling from b to a. It is 

mathematically presented as a full graph with (n) nodes. The TSP has direct applications in 

many engineering disciplines such as telecommunications, electricity, and a lot of network 

applications. It has high importance in Geoinformatics as it mathematically model the 

networks and infrastructures (Eleiche and Markus 2010). In some cases, the length of edges is 

computed by geodesy as curved lines on the surface of reference ellipsoid. TSP is a prototype 

of hard combinatorial optimization problem where the possible solutions are (n-1)! and is 

considered NP-hard and NP-complete (Jungnickel 2008). This important problem does not 

have yet (2020) an exact deterministic algorithm to compute its optimal circuit.  

The purpose of this research is to compute a minimum bound of the TSP in an exact 

algorithm for the general case of the problem which is asymmetrical data where          

cost(u,i)≠cost(i,u). The mathematical and asymptotic analysis of the algorithm are presented. 
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2- Mathematical Formulation 

The TSP is composed of a weighted complete directed graph G = (V, E), where (V) 

are the nodes with size (n), and (E) are the edges with size (n2). V = {1, 2, …, n}, and 𝐸 =

{(𝑢, 𝑣)| 𝑢, 𝑣 ∈ 𝑉} 𝑎𝑛𝑑 {𝑐𝑜𝑠𝑡(𝑢, 𝑣) ∈ ℝ ≥ 0}  (Bondy and Murty 1976). The graph with 

edges of negative cost is beyond the scope of this research. 

 

A. Cost Array 

The input data are stored in the cost array. It has the format [u, v, cost(u,v)], where (u) is the 

from-node of the edge, (v) is the to-node of the edge, and (cost(u,v)) is the distance of the 

edge. The data type of (u) and (v) is integer, while (cost) is a positive real number and may 

equals to zero. The cost array has a size of (3 n2) and its structure is shown in Table 1. It has a 

single row for each edge (u,v).  

 

Table 1. The structure of input cost array 

 

 

 

 

 

 

 

 

 

 

 

B. Minimum Travel Array 

The Minimum-Travel-Array is the main output of this algorithm. Its structure is [InCost, u, i, 

v, OutCost], where (InCost) is the cost of the edge (u,i), (u) is the incident node to node (i), (i) 

is the node of interest (1 ≤ i ≤ n), (v) is the outgoing node from node (i), and (OutCost) is 

the cost of the edge (i,v). The size of the Minimum-Travel-Array is (5n) (Eleiche, Markus 

2010), and Table 2 shows its structure.  

 

Table 2. Minimum Travel Array 

InCost u i v OutCost 

… … 1 … … 

InCost u i v OutCost 

     

… … n … … 

 

3- Hypothesis  

The idea of this solution is to divide the problem into two main subproblems, incident 

side and outgoing side. The incident side is where the node (i) is the arrival destination from 

another node (u) with the minimal arrival cost (InCost1). The outgoing side is to depart from 

u 

(from-node) 

v 

(to-node) 
Cost 

1 1 ∞ 

… … … 

1 n … 

2 1 … 

2 2 ∞ 

… … … 

n n ∞ 

http://ijisd.journals.ekb.eg/


International Journal of Industry and Sustainable Development (IJISD) 

Volume 1, No. 2, PP. 76-84, July 2020, ISSN 2682-4000   

 

http://ijisd.journals.ekb.eg                                                                78 

 

the node (i) to another node (v) with the minimal departure cost (OutCost1), as shown in Fig. 

1. This is traveling to and from node (i) with the minimal cost. It is not possible to travel 

through node (i) with a cost less than (𝑚𝑖𝑛𝐶𝑜𝑠𝑡 = 𝐼𝑛𝐶𝑜𝑠𝑡 +  𝑂𝑢𝑡𝐶𝑜𝑠𝑡) , as shown in 

equation (1). This is a direct and simple selection  application for the minimal cost value from 

each side. 

 

 
Fig. 1.  Incident and outgoing nodes for node (i).  

 

𝐼𝑛𝐶𝑜𝑠𝑡1 = 𝐸(𝑢, 𝑖) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡, 𝐸(𝑢, 𝑖) = min  𝐸([1, 𝑛], 𝑖)  

𝑂𝑢𝑡𝐶𝑜𝑠𝑡1 = 𝐸(𝑖, 𝑣) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡, 𝐸(𝑖, 𝑣) = min E(𝑖, [1, 𝑛])  

min 𝑇𝑟𝑎𝑣𝑒𝑙 𝐶𝑜𝑠𝑡 𝑓𝑜𝑟 𝑛𝑜𝑑𝑒 (𝑖) = 𝑚𝑖𝑛𝐶𝑜𝑠𝑡 = 𝐼𝑛𝐶𝑜𝑠𝑡1 +  𝑂𝑢𝑡𝐶𝑜𝑠𝑡1 

(1) 

 

A. Prevent Loop Condition 

In some cases, we find that node (u) = node (v), same node has the minimum cost to arrive to 

node (i) and to depart from it, this is not allowed by the definition of TSP, which states that 

each node is visited only once (Eleiche 2015). In such case, another computation is required. 

We select the second node (u2), from incident side, such that it has the second minimum cost 

(InCost2) to arrive to node (i). Similarly, the node (v2) from outgoing side has the second 

minimum cost (OutCost2) to depart from node (i), as shown in Fig. 2. It is worth to note that 

although node (u) = node (v) = node (a), however, InCost1 ≠ OutCost1, as the problem is not 

symmetrical. The computation of (minCost) is shown in equation (2). 

 

 

 
Fig. 2. Second minimum cost for Node (i). 
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𝐼𝑛𝐶𝑜𝑠𝑡2 = 𝐸(𝑢2, 𝑖) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡, 

𝐸(𝑢2, 𝑖) = min  𝐸([1, 𝑛], 𝑖) && (𝐸(𝑢2, 𝑖) ≥  𝐸(𝑢, 𝑖) ) 

𝑂𝑢𝑡𝐶𝑜𝑠𝑡2 = 𝐸(𝑖, 𝑣2) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

𝐸(𝑖, 𝑣2) = min E(𝑖, [1, 𝑛]) && (𝐸(𝑖, 𝑣2) ≥  𝐸(𝑖, 𝑣)) 

𝑚𝑖𝑛𝐶𝑜𝑠𝑡 = 𝑚𝑖𝑛 {

(𝐼𝑛𝐶𝑜𝑠𝑡1 + 𝑂𝑢𝑡𝐶𝑜𝑠𝑡2), 𝐼𝑛𝑐𝑜𝑠𝑡 = 𝑖𝑛𝑐𝑜𝑠𝑡1, 𝑂𝑢𝑡𝐶𝑜𝑠𝑡 = 𝑂𝑢𝑡𝐶𝑜𝑠𝑡2
(𝐼𝑛𝐶𝑜𝑠𝑡2 + 𝑂𝑢𝑡𝐶𝑜𝑠𝑡1), 𝐼𝑛𝑐𝑜𝑠𝑡 = 𝑖𝑛𝑐𝑜𝑠𝑡2, 𝑂𝑢𝑡𝐶𝑜𝑠𝑡 = 𝑂𝑢𝑡𝐶𝑜𝑠𝑡1
(𝐼𝑛𝐶𝑜𝑠𝑡2 + 𝑂𝑢𝑡𝐶𝑜𝑠𝑡2), 𝐼𝑛𝑐𝑜𝑠𝑡 = 𝑖𝑛𝑐𝑜𝑠𝑡2, 𝑂𝑢𝑡𝐶𝑜𝑠𝑡 = 𝑂𝑢𝑡𝐶𝑜𝑠𝑡2

 

(2) 

B. Exact Minimum Bound for TSP 

Let CTSP be the required cost for optimal circuit which is unknown, and CminBound is an exact 

minimum bound for TSP, such that (CminBound ≤ CTSP ) is shown in equation (3). 

 

𝐶𝑚𝑖𝑛𝐵𝑜𝑢𝑛𝑑 =  𝑚𝑎𝑥

{
 
 

 
 ∑𝐼𝑛𝐶𝑜𝑠𝑡

𝑛

1

∑𝑂𝑢𝑡𝐶𝑜𝑠𝑡

𝑛

1

 (3) 

 

The exact minimum bound CminBound equals to the higher value from (∑ 𝐼𝑛𝐶𝑜𝑠𝑡𝑛
1 ) and 

(∑ 𝑂𝑢𝑡𝐶𝑜𝑠𝑡𝑛
1 ), which are the summation of the cost of incident edges  and  outgoing edges 

respectively from the Minimum-Travel-Array in Table 2. 
 

4- Mathematical Proof 

The Minimum-Travel-Array stores the minimum exact cost to pass through each node, 

and by summation of costs from both sides, exact minimum bound for the TSP is computed. 

Let us consider the TSP_Array is similar in structure to the Minimum-Travel-Array, and it 

contains the required solution for TSP, so that (CTSP) is the required cost for optimal circuit, 

Cin(i) and Cout(i) are the cost of incident edge and outgoing edge to node (i) in optimal 

solution, as shown in Table 3. 

 

Table 3. The structure of TSP_Array (optimal solution) 

Cin u i v Cout 

… … 1 … … 

Cin u i v Cout 

     

… … n … … 

 

In case of the optimal solution, the following equation (4) is applied 

𝐶𝑇𝑆𝑃 = ∑𝐶𝑖𝑛(𝑖)

𝑛

1

 =  ∑𝐶𝑜𝑢𝑡(𝑖)

𝑛

1

 (4) 

Let us consider the following simple mathematical rule, Consider that : (C = a), as shown in 

equation (5): 

C = 𝑎 = 𝑎 + (𝑏 − 𝑏)   (𝑤ℎ𝑒𝑟𝑒 {(𝑎, 𝑏, 𝐶) ∈ ℝ ≥ 0 𝑎𝑛𝑑 𝑎 ≥ 𝑏 } 

C = 𝑎 = (𝑎 −  𝑏) + 𝑏         {(𝑎 −  𝑏) ≥ 0  } , then 

C ≥ 𝑏 

(5) 

 

In the previous example, (C) is the required cost for the minimum cycle (CTSP) and it is 
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unknown, and it equals to the quantity (a). The quantity (b) is the sum of the minimum travel 

cost for each vertex (CminBound) and it is a known quantity. It is evident that both  {(𝑎, 𝑏) ≥

0 𝑎𝑛𝑑 𝑎 ≥ 𝑏 } by adding and subtracting (b) still the equation is valid, and still (a-b) is 

unknown but {(𝑎 −  𝑏) ≥ 0}. This means that (C) must be greater than (or equal) to (b). By 

applying this concept to the minimum travel cost and assuming that the TSP_Array in Table 

3 represents the tour of least cost, then as shown in equation (6), 

𝐶𝑇𝑆𝑃 = ∑𝐶𝑖𝑛(𝑖)

𝑛

1

 =  ∑(𝐶𝑖𝑛(𝑖) −  𝐼𝑛𝐶𝑜𝑠𝑡

𝑛

1

)  + ∑𝐼𝑛𝐶𝑜𝑠𝑡

𝑛

1

 

𝐶𝑇𝑆𝑃 = ∑𝐶𝑜𝑢𝑡(𝑖)

𝑛

1

 =  ∑(𝐶𝑜𝑢𝑡(𝑖) −  𝑂𝑢𝑡𝐶𝑜𝑠𝑡

𝑛

1

)  + ∑𝑂𝑢𝑡𝐶𝑜𝑠𝑡

𝑛

1

 

𝐶𝑇𝑆𝑃  ≥   ∑ 𝐼𝑛𝐶𝑜𝑠𝑡 ≥ 0 𝑛
1   

 

𝐶𝑇𝑆𝑃  ≥   ∑ 𝑂𝑢𝑡𝐶𝑜𝑠𝑡𝑛
1 ≥ 0  

𝐶𝑚𝑖𝑛𝐵𝑜𝑢𝑛𝑑 =  𝑚𝑎𝑥

{
 
 

 
 ∑𝐼𝑛𝐶𝑜𝑠𝑡

𝑛

1

∑𝑂𝑢𝑡𝐶𝑜𝑠𝑡

𝑛

1

 

(6) 

 

In the equation (6), for each vertex (i), the minimum incident cost (𝐼𝑛𝐶𝑜𝑠𝑡) was added and 

subtracted, which does not change the value of the equation. Then, the value of the incident 

cost  to the vertex (i) from minimum cycle (𝐶𝑖𝑛) is represented as the known minimum 

incident cost (𝐼𝑛𝐶𝑜𝑠𝑡) in addition to another quantity (𝐶𝑖𝑛 −  𝐼𝑛𝐶𝑜𝑠𝑡). It is evident that the 

quantity (𝐶𝑖𝑛) is unknown, while the other quantity (𝐼𝑛𝐶𝑜𝑠𝑡) is well known. 

It is evident that the Minimum-Travel-Array does not represent the required least tour for 

TSP, and many nodes will have travel cost higher than their minimum-travel-cost within the 

least tour. However, the Minimum-Travel-Array is important characteristic for the TSP, and 

provides exact minimum bound that the least cost will exceed. 

 

A. Algorithm of Minimum Bound for TSP and Main Results 

The pseudo code of the algorithm 

 

Input: A weighted complete directed graph G = (V, E), where V = {1, 2, …, n}, and 𝐸 = {(𝑢, 𝑣)| 𝑢, 𝑣 ∈

𝑉} 𝑎𝑛𝑑 {𝑐𝑜𝑠𝑡(𝑢, 𝑣)  ∈ ℝ} such that { 𝑐𝑜𝑠𝑡(𝑢, 𝑣) ≥ 0} and 𝑐𝑜𝑠𝑡(𝑢, 𝑣) ≠  𝑐𝑜𝑠𝑡(𝑣, 𝑢) 

Output: The minimum travel cost array for each vertex and the minimum lower bound for the cost to visit 

each vertex in V only once. 

1. Class MinTravel{InCost, From_Node, Node_ID, To_Node , OutCost} 

2. For each vertex   i ∈ V   

3.      MinTravel[i,3]  ← i     

4.       MinTravel[i,2]  ← u of minimum cost of  E’ =  {(u, i)|u ∈ V} 

5.       MinTravel[i,1]  ← minimum cost of  E’ =  {(u, i)|u ∈ V} 

6.       MinTravel[i,4]  ← v of minimum cost of  E’’ =  {(i, v)|v ∈ V} 

7.       MinTravel[i,5]  ← minimum cost of  E’’ =  {(i, v)|v ∈ V} 

8.      if (MinTravel[i,2]  ==   MinTravel[i,4]  ) then Prevent(i) 

9. TSPLowerBound() 
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Procedure Prevent(i) 

1. InCost2 ← 𝑠𝑒𝑐𝑜𝑛𝑑min 𝑐𝑜𝑠𝑡 𝐸′ = {(u2, i)|u2 ∈ V && u2 ≠ MinTravel[i, 2]} 

2. 𝑢2 ← 𝑢2 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 min 𝑐𝑜𝑠𝑡 𝐸′ = {(u2, i)|u2 ∈ V && u2 ≠ MinTravel[i, 2]} 

3. OutCost2 ← 𝑠𝑒𝑐𝑜𝑛𝑑min 𝑐𝑜𝑠𝑡 𝐸" = {(i, v2)|v2 ∈ V && v2 ≠ MinTravel[i, 4]} 

4. 𝑣2 ← 𝑣2 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 min 𝑐𝑜𝑠𝑡 𝐸" = {(i, v2)|v2 ∈ V && v2 ≠ MinTravel[i, 4]} 

5. C1 = MinTravel[i,1]  + OutCost2 

6. C2 = InCost2 + MinTravel[i,5] 

7. C3 = InCost2 + OutCost2 

8. C = min[C1, C2, C3] 

9. Case (1): C = C1 

10.           MinTravel[i,4]  ← v2 

11.            MinTravel[i,5]  ← OutCost2  

12.  Case (2): C = C2 

13.            MinTravel[i,2]  ← u2 

14.            MinTravel[i,1]  ← InCost2    

15. Case (3): C = C3 

16.            MinTravel[i,2]  ← u2 

17.            MinTravel[i,1]  ← InCost2    

18.            MinTravel[i,4]  ← v2 

19.            MinTravel[i,5]  ← OutCost2  

 

Procedure TSPLowerBound 

1. for i← 1 to n 

2.       Sum_in   = Sum_in   + MinTravel [i,1] 

3.       Sum_out = Sum_out + MinTravel [i,5] 

4. If (Sum_in > Sum_out)  

5.       then TSPLowerBound = Sum_in  

6.       else TSPLowerBound = Sum_out    

B. Main Results 

A C++ program was implemented for this algorithm to test its validity among some TSP 

problems with (best) known solutions. The TSPLIB website provides sample TSP problems 

with best known solutions (http://www.math.uwaterloo.ca/tsp/problem/outlinks.html , May 

2020) in order to test the validity of proposed solutions for this interesting problem. This 

program tested three problems which are (br17, ry48p, ft53) from TSPLIB, and a fourth 

problem is defined at (http://www.math.uwaterloo.ca/tsp/college/).  

 

Table 4. Applications of algorithm 

Problem Name Size (n) 
Best known 

solution 
Incident Cost Outgoing Cost 

Lower 

Bound 

br17 17 39 0 24 24 

ry48p 48 14422 12987 11964 12987 

ft53 53 6905 3580 3989 3989 

College 647 647 47,149,705 25,615,500 42,777,207 42,777,207 

 

As shown in Table 4, all the four tested problems had the computed lower bound less than 

best-known-solution. This test prove practically the validity of the algorithm. 
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C. Algorithm Classification 

The Minimum Travel Cost Algorithm for the Traveling Salesman Problem has the following 

characteristics: 

1) It divides the problem into two separate subproblems: incident side and outgoing side, 

solving each one separately. 

2) The algorithm is recursive, it computes the minimum incident and outgoing cost for 

each node. 

3) It has iterative part, in which for each node the minimum cost is computed for the 

whole problem. 

4) It memorizes the output for each step for further use. 

From the above characteristics, the algorithm can be classified as Dynamic Programming 

(DP) algorithm (Bertsekas 2005). 

D. Asymptotic Analysis of the Algorithm 

The main function finds the minimum travel cost for each node in the TSP. The highest 

complexity is for the selection of the minimum (incident/outgoing) cost which runs (n-1) time 

for each node, making it (n(n-1)) for each side, as shown in Table 5. The Prevent(i) function 

is executed only when both incident and outgoing nodes are the same. This can never happen 

in best condition and can appear at each node in worst condition. 

 

Table 5. Asymptotic analysis of main function 

Whole 

Problem 

Each 

Node 
Function Complexity 

Yes Yes MinTravel[i,3]  ← i     n 

Yes Yes 
MinTravel[i,2]  ← u of minimum cost of  E’ =  

{(u, i)|u ∈ V} 
n 

Yes Yes 
MinTravel[i,1]  ← minimum cost of  E’ =  {(u, i)|u ∈

V} 
n(n-1) 

Yes Yes 
MinTravel[i,4]  ← v of minimum cost of  E’’ =  

{(i, v)|v ∈ V} 
n 

Yes Yes 
MinTravel[i,5]  ← minimum cost of  E’’ =  {(i, v)|v ∈

V} 
n(n-1) 

Yes Yes if (MinTravel[i,2]  ==   MinTravel[i,4]  )  n 

May be May be Prevent(i) 

Worst condition = 

(n* (n-2)) 

Best Condition = 0 

no no TSPLowerBound() n 
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1) Prevent(i) asymptotic analysis: This function computes the second minimum cost for 

each node (Kavitha, et al. 2008). Similarly to main function, the minimum second 

cost is preformed (n-2) times, as shown in Table 6Table 6. 

 

Table 6. Asymptotic analysis for Prevent(i) function 

Each 

Node 
Function Complexity 

Yes 
InCost2 ← 𝑠𝑒𝑐𝑜𝑛𝑑 min 𝑐𝑜𝑠𝑡 𝐸′ = {(u2, i)|u2 ∈ V && u2

≠ MinTravel[i, 2]} 
n-2 

Yes 
𝑢2 ← 𝑢2 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑min 𝑐𝑜𝑠𝑡 𝐸′ = {(u2, i)|u2 ∈ V && u2

≠ MinTravel[i, 2]} 
1 

Yes 
OutCost2 ← 𝑠𝑒𝑐𝑜𝑛𝑑 min 𝑐𝑜𝑠𝑡 𝐸" = {(i, v2)|v2 ∈ V && v2

≠ MinTravel[i, 4]} 
n-2 

Yes 
𝑣2 ← 𝑣2 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑min 𝑐𝑜𝑠𝑡 𝐸" = {(i, v2)|v2 ∈ V && v2

≠ MinTravel[i, 4]} 
1 

 

2) TSPLowerBound() asymptotic analysis: This function is simple and compute the total 

value for the minimum-travel-cost as shown in Table 7Table 7, by direct addition 

with cost of (n). 

 

Table 7. Asymptotic analysis for TSPLowerBound() function 

Each 

Node 
Function Complexity 

Yes 
Sum_in   = Sum_in   + MinTravel [i,1] 

n 

Yes 
Sum_out = Sum_out + MinTravel [i,5] 

n 

 

3) The asymptotic analysis of the algorithm: The algorithm highest complexity functions 

are the selection of minimum cost with complexity of O(n(n-1)) and Prevent(i) with 

complexity of O(n(n-2)). Then, the algorithm has an overall bound complexity of 

O(n2). 

 

5- Conclusion 

This research presented the Minimum-Travel-Cost Algorithm for computing an exact 

lower bound for the general case of Traveling-Salesman-Problem (TSP). Although the TSP 

does not have yet an exact algorithm to determine its optimal path, this algorithm can help on 

identifying a minimal threshold that the exact unknown cost will exceed.  

It selected the minimum cost to arrive to each node and depart from it. Then, it computed the 

sum of the total incident and departure costs. The highest value from both sum is a lower 

bound for the problem. The mathematical proof for the algorithm was presented. The 

algorithm was implemented into a program and tested among well known cases for existing 

problems, and the results were consistent. The algorithm can be classified as dynamic 

programming algorithm with complexity of O(n2).  It does not solve the Traveling-Salesman-

Problem, however it provides an exact and deterministic lower bound for its general case. 
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