Effects of FMWCNT inclusions on PVDF/FMWCNT membranes structure and characteristics

R.M.Zarraa12, Shaaban Nosier3, A.A. Zatout3, MH Abdel-Aziz34, Mohammed S.Al-Geundi2

1Petrochemical Engineering Department, Faculty of Engineering, Pharos University in Alexandria, Alexandria, Egypt.
2 Chemical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt.
3Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt.
4King Abdulaziz University, Chemical and Materials Engineering Department, Rabigh, Saudi Arabia.

Radwa.zarraa@pua.edu.eg, nosier2017@gmail.com, ahmed.zaatoot@alexu.edu.eg, mhmossa@kau.edu.sa, m.zaghlul@mu.edu.eg

Abstract: Commercial polyvinylidene difluoride (PVDF) membrane and another membrane which was composed of PVDF and FMWCNTs used to remove organic compounds from a water using the vacuum membrane distillation (VMD) method. SEM analysis, FTIR, and contact angle to examine the pore size and porosity and the hydrophobicity nature of the membrane to establish the permeate side’s quality and quantity, the properties of PVDF/FMWCNTs nanocomposites (NCs), which were created by phase inversion, and the crystal structure of poly(vinylidene fluoride) (PVDF) were examined in relation to the effects of multiwall carbon nanotube (MWNT) inclusions. Our results suggest that the effects of FMWCNT inclusions on the PVDF crystallization process are highly dependent on the exact melt treatment and subsequent cooling procedure. The addition of FMWCNTs causes the membrane’s porosity and mass transport-available pores to rise. It also decreases hydrophobicity, as seen by the sudden decline in the contact angle. The fabricated membranes conducted in VMD cell to evaluate the total permeate reflux of ethanol separation from ethanol water mixture.

Keywords: Phase inversion, FTIR, Contact angle, Hydrophobic, Sem

1. INTRODUCTION

Commercially, for membrane distillation applications, numerous membranes made of polymers are used. Solvent casting is used to create these polymeric membranes, which use a process called nonsolvent induced phase separation (NIPS). Commercial microporous membranes formerly been produced using a number of various solvents. It is soluble in dimethylsulfonic acid, dimethylacetamide, dimethylformamide and insoluble in ketones and esters. It has high mechanical strength, wear and weather resistance, resistance to ultraviolet and ionizing radiation, the action of mineral acids, with the exception of fuming sulfuric, alkalis, halogens and hydrocarbons. [1]. These solvents fall under the hazardous category and are toxic to the environment [2,3]. Therefore, nonhazardous solvent use in industry is recommended. An eco-friendly solvent classified as a safe, environmentally friendly solvent is dimethyl sulfoxide (DMSO) [4,5].

Membrane distillation (MD) has a lot of drawbacks. One of them is the requirement for membranes with particular properties to guarantee successful operation and long-lasting performance. The membrane wetting phenomenon is one of the main disadvantages of MD, which is mostly caused by the working liquids wetting the membrane pores [6]. Furthermore, membranes were changed by being blended with different polymers [7,8], compatibility between polymers and additives [9], the addition of inorganic fillers and surface modifications [10–13], to enhance their properties and performance. The kind of a solvent and polymeric material, the solution for dope temperature, composition of the coagulation agent, temperature of the bath of coagulation, timing of evaporation, and dry circumstances are only a few of the factors that affect membrane properties. According to specific separation objectives, modifications are done. When separating ethanol from water using MD, for instance, membrane hydrophobicity is one of the most desired
parameters. Due to their reduced water molecule interaction with the membrane surface, hydrophobic membranes improve the performance of MD [14].

In regions where solar irradiance and water scarcity are closely associated, using solar thermal energy for membrane distillation desalination provides a safe and environmentally friendly solution [15]. To explore the energy-saving through heat recovery, an air gap membrane distillation (AGMD) unit underwent experimental research. The water desalination plant made use of the module for spiral air gap membrane [16]. The lack of freshwater worldwide and the rising cost of fossil fuels have spurred the development of new and energy-efficient desalination methods [17]. Governments are burdened by the water constraint as a result of the rapid population growth and expansion of industry. Innovative water delivery systems with minimal production costs must be developed immediately [18], novel techniques like forward osmosis (FO) and membrane distillation (MD) demonstrated extraordinary operational stability in the presence of heavy oil and salt concentrations [19].

Poly(vinylidene fluoride) (PVDF) is an engineering thermoplastic fluoropolymer that finds extensive use in a multitude of sectors, including lithium batteries, sensors and transducers, insulation, and biomedical applications. Because of its easy processability, mechanical strength, low weight, low thermal conductivity, strong chemical corrosion resistance, and heat resistance, it is used in the variety of applications listed above [20–22].

Therefore, because to its hydrophobic properties and simple solubilization in a variety of organic solvents, polyvinylidene fluoride (PVDF) is the polymer that is most typically employed to create commercial membranes. greater hydrophobicity is implied by a greater CA.

For the purpose of purifying water, different nanomaterials such Zeolites, dendrimers, carbon nanomaterials, and metal/metal oxide nanoparticles have seen tremendous revolutions the past few years. Due to their distinctive characteristics, including as their huge surface area, high length to diameter ratio, and great mechanical strength, FMWCNTs have been shown to be efficient as one-dimensional additives in the production of membranes [23]. FMWCNTs exceptional capacity for mass transfer through their inner channels makes them potentially useful as membrane nanofillers. The water flux produced by the membrane made entirely of FMWCNTs was greater than the water flux measured using PVDF membrane [24–27]. Additionally, by using FMWCNTs in the membrane matrix, both the antifouling property and mechanical strength have been enhanced [28,29]. Applying contact angle, Fourier transform infrared (FTIR), and scanning electron microscopy, porosity, and pH range, the purpose of this work is to create and characterize flat sheet PVDF & PVDF FMWCNTs polymeric membranes as well as study the phase inversion-prepared PVDF and PVDF/FMWCNTs nanocomposites' (NCs) shape, structure, and mechanical characteristics.

2. MATERIALS AND METHODS

I. Membrane Preparation

In order to remove unbounded moisture before membrane fabrication, PVDF polymers were dried in a vacuum oven. Molecular weight of PVDF is above 100,000 g/mol, melting point is of 171–180 °C, the crystallization temperature is of 141–151 °C, and a glass transition temperature is of ~40 °C. Phase inversion was employed to create flat sheet membranes, with distilled water serving as the coagulation medium. Phase inversion, which involved the solvent-nonsolvent de mixing process and solvent evaporation, converted the solution of dope into a solid form. The basic polymer (PVDF) was used to manufacture the dope solutions. Then subsequently agitated at 150 rpm with a stirring magnet for 6 hours at 60°C and 6 hours at 70°C to produce an evenly distributed polymeric solution for dope. After being kept for 24 hours to allow for degassing, the homogeneous polymeric solution was cast onto a plate of glass with an unwoven material providing support for the membrane. To get rid of the solvents, the plate of glass was immersed instantly in a bath of coagulation for twenty-four hours, using distilled water as the non-solvent. The manufactured membrane was dried after complete mixing for 48 hours at ambient temperature, then dried again at 70°C vacuum oven to eliminate any leftover solvent and non-solvent that had become confined inside the matrix of membranes[30,31].
II. Preparation of FMWCNTs /PVDF membrane

In general, by increasing FMWCNTs, as a hydrophilic element, some walls membrane between the internal channels of the membrane are lost and large interconnected pores are formed due to increased placement velocity of solvent and nonsolvent during the phase inversion process. These interconnected pores may increase the porosity and water flux of the related mem-branes. FMWCNTs with carboxylic acid and hydroxyl groups, respectively with diameters of 10–50 nm and length of 1–30 μm (from Nanjing XF Nanomaterial Science and Technology Co) FMWCNTs were dispersed in NMP using ultrasonication for 12 hours as part of the preparation phase for the FMWCNTs/PVDF solution to prevent agglomeration. In the meantime, NMP (30 wt%) was used to dissolve PVDF pellets in an oven at 70 °C for two hours [32]. The final solution was then created by sonicating the PVDF/NMP solution for 12 hours with the MWCNT suspension. FMWCNTs made up 0.2% of the FMWCNTs/PVDF mixture. As depicted in figure 1 [33–35].

Figure 1 Preparation of membrane of PVDF with FMWCNTs

III. Vacuum Membrane Distillation Cell

A vacuum membrane distillation cell (VMDC) utilized in the current study to evaluate the separation of alcohol from water using the two fabricated membranes by study the rate of flux. Shown in Figure 2, the membrane cell made of two separate compartments made of acrylic polymeric material to prevent corrosion and to avoid the dissolving by the ethanol solution. The outer area of the cell is 54 m2 and the fabricated membrane of 16 m2 was inserted in the middle of cell between the two polymeric compartments. The polymeric membrane separates the cell into two chambers. The down part of cell contains two parts, one for entering the feed solution and the other part for which Leaving the retentate which recycled again to the feeding tank. The distance between the two parts was about 2cm. A vacuum using a vacuum pump was applied to other party cell (Upper party or permeate part) The permeate was obtained by condensing the fluxed vapor leaving the upper part of cell using Cold water that circulated through the condenser. The Condensed vapor (Permeate) leaving the condenser was collected in permeate tank. The mixture of ethanol and water used was 2% wt concentration, the temperature of feed solution was 50°C and the volumetric flow rate of feed solution used in the present work 0.143 L/min. The total permeates flux was determined by the following equation(1) [36,37].

\[J_{tot} = \frac{w_p}{A \times t} \]

(1)
3. MEMBRANE CHARACTERIZATION

I. Scanning Electron Microscopy
Scanning electron microscopy (SEM) was utilized to exhibit the morphology of the generated membranes. To increase electrical conductivity, gold was applied to the membrane sample surfaces. A SEM TESCAN (3 XMU, MIRA) was used to scan the top surface of membranes to reveal their holes [38].

II. Fourier Transform Infrared Spectroscopy
One of the best techniques for sample characterization is Fourier transform infrared (FTIR) spectroscopy, it could be applied to determine the functional groups and potential molecular interactions between chemical compounds. FTIR can be used for both quantitative and qualitative analysis, and it can be employed with a variety of materials and circumstances. The instrument used to determine a sample's absorbance spectrum is a spectrophotometer. The FTIR spectrophotometer (Bruker, Alpha) provides the IR spectrum significantly more quickly than the conventional spectrophotometer[39].

III. Contact Angle
The hydrophilicity and the contact angle determine the membrane surface's moisture absorption capacity. A tiny video microscope was used to measure the contact angle (CVM). The average drop volume was 10l, and the contact time was 10 s. Each figure was the average of ten measures that are repeated. The testing procedure is based on Standard procedures for corona-treated polymer films, ASTM D5946-96 employing measurements of the water contact angle and the standard testing method for paper's surface wetness is ASTM D724-99 [40].

IV. Membrane Porosity
The density as shown in the following equation can be employed in the computation of membrane porosity. After being submerged in isopropanol for six hours, the membrane was dried with paper towels. Equation (2) was used to determine the porosity by measuring the weight of the wiped-and-dried membrane.

\[
\varepsilon = \frac{m_b/\rho_b}{m_p/\rho_p} \times 100\%
\]

\(\varepsilon\) = the membrane's porosity \(m_b\) = membrane mass(g)
\(m_p \) = isopropanol absorbed mass (g) \(\rho_b \) = membrane density (g/cm\(^3\)) \(\rho_b \) = isopropanol density (g/cm\(^3\)) [41].

V. Pore Size
With the aid of the The University of Wisconsin, Madison, WI, USA's ImageJ software (LOCI), the average pore size of PVDF membrane was calculated [42].

VI. Tensile Strength Measurements
The tensile tests of the fabricated membranes, PVDF and FMWCNTs/PVDF, were carried out using a Universal Mechanical and Tribological Tester UMT-2M (Bruker) at room temperature. The samples were clamped at both ends and pulled at constant elongation velocity of 0.1 mm/sec. Ultimate Tensile strength was obtained [43].

<table>
<thead>
<tr>
<th>Analysis Test</th>
<th>Device</th>
<th>purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanning Electron Microscopy</td>
<td>A SEM TESCAN (3 XMU, MIRA)</td>
<td>Exhibit the morphology of the generated membranes</td>
</tr>
<tr>
<td>Fourier Transform Infrared Spectroscopy</td>
<td>FTIR spectrophotometer (Bruker, Alpha)</td>
<td>Determine the functional groups</td>
</tr>
</tbody>
</table>
| Measurements of the water contact angle | ASTM D5946-96 | • Hydrophilicity
• Contact angle
• Membrane surface's moisture |
| Average pore size | University of Wisconsin, Madison, WI, USA's ImageJ software (LOCI) | Determine Pore Size |
| Tensile Strength Measurements | Universal Mechanical and Tribological Tester UMT-2M (Bruker) | Ultimate Tensile strength was obtained |

4. RESULTS AND DISCUSSIONS

I. Scanning Electron Microscopy
The SEM imaging of the PVDF membrane and the investigation of PVDF/CNTs are shown in Figure 3(a,b). The porosity of the manufactured two membranes was shown by the SEM imaging, which was carried out at an accelerating voltage of 15 kV. As we can see, the PVDF has entirely covered the FMWCNTs, leaving FMWCNT remnants around the top and bottom borders. Due to the addition of CNTs, the surface is smooth ("skin type"), homogeneous, and has a greater number of pores, which implies a declining hydrophobicity.
II. Porosity and contact angle

By using the water contact angle test, the hydrophobicity of the PVDF and MWCNT/PVDF membranes was evaluated. In this test, the contact angle between the membrane sample and the deionized water was measured and contrasted with the membrane sample's contact angle, and the methylene blue. The contact angle was tested twice with various drop phases; the results show that the contact angles for PVDF and MWCNT membranes are (110°) and (92°), respectively. To confirm the reproducibility of the results, the membrane porosity test was conducted three times. By replacing in equation (2), it was discovered that the membrane porosity for PVDF and MWCNT/PVDF membranes, respectively, is equal to 45.6% and 71.2%. The essential properties of membranes are outlined in Table 2 [44, 45].

Table 2 Main Characteristics of PVDF membrane and PVDF/FMWCNTs membrane

<table>
<thead>
<tr>
<th>Membrane</th>
<th>Porosity</th>
<th>Contact angle</th>
<th>Pore size</th>
<th>Tensile strength</th>
<th>PH range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVDF</td>
<td>45.6%</td>
<td>110°</td>
<td>0.22μm</td>
<td>4.5MPa</td>
<td>2-10</td>
</tr>
<tr>
<td>FMWCNT</td>
<td>71.2%</td>
<td>92°</td>
<td>0.45 μm</td>
<td>42.4MPa</td>
<td>3-9</td>
</tr>
<tr>
<td>PVDF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Fourier Transform Infrared Spectrometer (FTIR)

Fourier Transform Infrared Spectrometer (FTIR) displays the phases and active bonds in the membrane structure. As demonstrated in Figure 4 a,b. Peaks at 3305, 2948 cm\(^{-1}\) reveals the carboxylic acid O-H stretch appears. The peaks at 1406 and 870 cm\(^{-1}\) show CH2 deformation and rocking vibrations, respectively, while that at 1095 cm\(^{-1}\) is assigned to C-F wagging vibration. Moreover, distinctive bands at 1043, 1035, and 791 cm\(^{-1}\) belongs to CF2 bending, deforming, and stretching vibrations. The presence of the α-phase is another characteristic of a PVDF membrane. at 719 cm\(^{-1}\) and existence of Y-phase at 1241 and 433 cm\(^{-1}\). Following the addition of MWCNTs to PVDF, the stretching modes C-F (830-900 cm\(^{-1}\)) and C-N (1200-1500 cm\(^{-1}\)) with corresponding vibrations in the signature of PVDF and FMWCNTs are apparent in the FTIR [46, 47]. The signals of C-C, C-O, and C-H are either extremely faint or invisible since FMWCNTs were very low in concentration compared to PVDF throughout the method of

https://ijisd.journals.ekb.eg/
coating. The likelihoods might result from the substantial PVDF coating and low MWCNT concentration [42,48,49].

Mass movement through the membrane might be aided by a higher membrane porosity, larger mean pore size, and a thinner layer of membrane. Although the flux through the membrane could not be raised as feed velocity increased, the mass transfer resistance across the membrane might predominate at a higher feed flow rate. The total permeate flux increased significantly when FMWCNTs were added to the PVDF membrane because the membrane's hydrophobicity decreased, as evidenced by the membrane's decreasing contact angle when FMWCNTs were added compared to when they weren't [42,46,49].

Figure 4a,b PVDF membrane and PVDF/MWCNTs FTIR
IV. Total permeate flux

It can be seen that; the total permeate flux was increased using PVDF/FMWCNTs membrane compared with pure PVDF membrane due to the hydrophobicity of membrane renders it highly selective to the ethanol than water. as showed in Table 3.

Table 3 Total permeate flux of ethanol separation from ethanol water mixture

<table>
<thead>
<tr>
<th>Membrane</th>
<th>Feed flow Rate</th>
<th>Feed Temperature</th>
<th>Ethanol Concentration</th>
<th>Total permeate flux (Kg / m².hr)</th>
<th>Percent Increase %</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVDF</td>
<td>0.143 L/min</td>
<td>50°C</td>
<td>2% wt</td>
<td>35.8375</td>
<td></td>
</tr>
<tr>
<td>PVDF/FMWCNTs</td>
<td>0.143 L/min</td>
<td>50°C</td>
<td>2% wt</td>
<td>47.175</td>
<td>31.63%</td>
</tr>
</tbody>
</table>

5. CONCLUSIONS

In this research, we looked at how melt-mixed PVDF/FMWCNTs nanocomposites (NCs) with FMWCNTs inclusions changed PVDF’s crystalline structure and dielectric characteristics. Our findings imply that the precise melt treatment and subsequent cooling process have a significant impact on the impacts of FMWCNT inclusions on the PVDF crystallization process. Adding FMWCNTs leads to an increase porosity of the membrane and the pores available for mass transport and also decrease hydrophobicity which was demonstrated by the abrupt decline in the contact angle. A vacuum membrane distillation cell (VMDC) utilized in the current study to evaluate the separation of alcohol from water using the tow fabricated membranes by study the rate of flux. The total permeate flux was increased using PVDF/FMWCNTs membrane compared with pure PVDF membrane due to the hydrophobicity of membrane renders it highly selective to the ethanol than water.

6. REFERENCES

https://ijisd.journals.ekb.eg/

https://ijisd.journals.ekb.eg/

