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Abstract: 
The mutation serves as a biomarker for cancer diagnosis and prognosis, indicating early-stage cancer. Efforts are 

underway to develop advanced pre-cancer detection methods and therapeutic strategies to restore TP53 function 

or counteract its loss. This study evaluates the performance of different deep-learning techniques in mutation 

detection as a precancer classifier. The evaluation was conducted in two distinct phases. Following data processing 

and feature selection, the performance of several models—Artificial Neural Network (ANN), Decision Tree (DT), 

K-Nearest Neighbors (KNN), and Convolutional Neural Network (CNN)—was systematically assessed across 

accuracy, sensitivity, and specificity metrics for codons 248, 249, and a combined dataset of these codons. Each 

model’s effectiveness was evaluated under two feature conditions, encompassing eight and thirty-three features. 

The Decision Tree, identified as the optimal performer, was further enhanced by integrating it with the XGBoost 

deep learning algorithm to maximize performance. Integrating a DT with XGBoost improves accuracy from 

93.15% to 96.55%, sensitivity from 94% to 98%, and specificity from 92% to 96%, making it more effective in 

detecting precancers based on codon mutations. This combined model enhances both true positive and true 

negative identification. The detection of codon mutations shows promise for early cancer detection. 
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I. INTRODUCTION 
ancer remains a significant global health burden, with approximately 19.3 million new cases and 10 

million cancer-related deaths reported in 2020, according to GLOBOCAN. The most common cancers 

worldwide include breast, lung, colorectal, prostate, and stomach cancers [1]. High-income countries 

tend to report higher incidence rates due to better screening and reporting systems, while low- and middle-income 

countries experience higher mortality rates due to limited healthcare access and late-stage diagnoses. Over half of 

all cancer diagnoses occur in individuals aged 65 and older, reflecting the impact of aging populations. 

Economically, cancer imposes a staggering cost of $1.16 trillion annually, encompassing treatment expenses, loss 

of productivity, and associated care. The global cancer burden is projected to rise to 28.4 million cases annually 

by 2040, a 47% increase driven by population growth, aging, and lifestyle factors such as tobacco use, poor diet, 

and physical inactivity. By 2040, low- and middle-income countries are expected to account for 70% of cancer-

related deaths. However, with effective prevention strategies, such as reducing smoking and improving diets, 

coupled with early detection programs and advancements like AI-driven diagnostics and personalized medicine, 

the rising cancer burden can be mitigated. These measures have the potential to significantly reduce both incidence 

and mortality rates, highlighting the need for global collaboration in addressing this growing challenge[2, 3] . 

Early detection can markedly improve prognosis and survival rates [4, 5]. Among the various biomarkers for 

cancer detection, the TP53 gene is called Guardian of the Genome.  It safeguards the DNA integrity within the 

cell. TP53 is a guide for the cell development, aging, and differentiation[6]. TP53 encodes a tumor suppressor 

protein that regulates cell cycle progression, DNA repair, and apoptosis. The tumor suppressor protein TP53 is a 

transcription factor frequently mutated in cancer [7]. 
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Mutations in this gene are observed in approximately 50% of all human cancers, making it a focal point in cancer 

research[8]. Specifically, mutations at codons 248 and 249 of TP53 have been implicated in the early stages of 

carcinogenesis, particularly in lung, liver, and colorectal cancers. Figure 1 shows examples of codons 248 and 

249 mutations.  Codon 248 is one of the most commonly mutated sites in the TP53 gene, particularly in various 

cancers. This mutation often results in a substitution of the amino acid arginine with another amino acid, which 

disrupts the DNA-binding domain of the TP53 protein[9, 10].  Codon 249 is another mutation site within the TP53 

gene and is frequently associated with various cancers, particularly hepatocellular carcinoma (HCC). The mutation 

at codon 249 often results in a substitution of the amino acid arginine with serine (R249S), which disrupts the 

normal function of TP53 as a tumor suppressor. This alteration impairs TP53's DNA-binding capacity, leading to 

a loss of function in regulating cell growth, apoptosis, and genomic integrity[11–14]. Consequently, researchers 

have identified this mutation as a biomarker for cancer diagnosis and prognosis, and it is an indicator of the early 

stages of cancer[15–17]. Scientists aim to update pre-cancer detection methods and develop early therapeutic 

interventions to restore TP53 function or compensate for its loss[18]. 

 

 
Figure 1: a. normal codon 248, b. mutated codon 248,  c. normal codon 249 d. mutated codon 249. 

 
This study aims to detect the mutations in the codons in the protein TP53 for precancer detection. This research 

evaluates the performance of several algorithms—Artificial Neural Network (ANN), Decision Tree (DT), K-

Nearest Neighbors (KNN), and Convolutional Neural Network (CNN)—across accuracy, sensitivity, and 

specificity metrics for detection of the mutations in codons 248, 249, and a combined dataset of these codons. 

Each model's effectiveness was assessed under two feature conditions, involving both eight and thirty-three 

features. The Decision Tree (DT), identified as the best performer, was further optimized by integrating the 

XGBoost algorithm to enhance its performance.  

 

The major contributions of this work can be summarized as follows: 

1. Evaluate the performance of different algorithms to detect mutations in: 

   - Codon 248 

   - Codon 249 

   - Codons 248 and 249 combined. 

2. Study the effectiveness of using eight features versus thirty-three features. 

3. Assess the performance of the DT model by integrating it with XGBoost to evaluate the best-performing 

model (Codons 248 + 249) using thirty-three features. 

 

II. RELATED WORK 
 

 Artificial intelligence (AI) has improved healthcare in many domains [19–21]. It facilitates pre-cancer 

detection by indicating the codon mutations by checking the codon sequence. Genetic variants pose the challenge 

of modelling categorical attributes (the four nucleotides) within the context of surrounding nucleotide 

sequences[22]. Mahmood, D. Yousif, et al., demonstrated that neural network-based prediction effectively 

identifies cancerous and pre-cancerous conditions associated with mutations in codon 248, achieving high 
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predictive accuracy. Data mining preprocessing steps and pattern extraction techniques were employed to 

construct the prediction model, selecting 8 out of 132 TP53 gene fields to classify cases into cancer and pre-cancer 

pathology classes[23].  Zahraa N. et al, introduced an in silico molecular classification approach for breast and 

prostate cancers using a Back Propagation Network. This model leverages data from seven datasets, including 

five from the UMD TP53 database and two from the IARC TP53 database[24].  Chaurasia et al, conducted a 

performance analysis of various data mining techniques for cancer classification, particularly for breast cancer 

data. This classification approach can reveal disease patterns or uncover the shared characteristics of cancer. 

Several data mining algorithms were tested, including decision tree classifiers, K-Nearest Neighbor, Sequential 

Minimal Optimization (SMO), and Best First Tree. Their results indicated that SMO outperformed the other 

classifiers in terms of accuracy [25]. Prashant Gupta et al, represented a new technique called Continuous 

Representation of Codon Switches (CRCS) was developed. CRCS is a deep learning-based approach that 

generates numerical vector representations of mutations, supporting various machine learning applications. This 

method has three main applications: (1) detecting cancer-related somatic mutations without the need for matched 

normal samples, useful in assessing tumor mutation burden via cell-free DNA; (2) identifying and analyzing 

potential cancer driver genes, such as DMD, RSK4, OFD1, WDR44, and AFF2; and (3) scoring individual 

mutations within a tumor sample, which helps predict patient survival in cancers like bladder urothelial carcinoma, 

hepatocellular carcinoma, and lung adenocarcinoma[25].  Another study employed BioBERT; a transformer-based 

language model specialized for biomedical text. Adding a single layer to BioBERT achieved high performance 

across tasks like text classification, language inference, and question answering. The study also utilized models 

such as BERT, LSTM, and BiLSTM to classify genetic mutations based on textual data[26]. Xiaoxiao Wang 

trained a deep convolutional neural network (CNN) based on the ResNet architecture to predict gBRCA mutations 

in breast cancer using whole-slide images (WSIs) [27]. 

 

III. THE PROPOSED SYSTEM 

Mutations alter the DNA-binding domain of the TP53 protein, compromising its ability to control cell proliferation 

and respond to genomic instability. Recent advancements in molecular biology and genetic sequencing have 

enabled the detection of these mutations at earlier stages, opening avenues for pre-cancer detection and potentially 

improving outcomes. This research highlights novel methodology targeting the 248-249 codon mutation in p53 

using different deep learning-based approaches. 

A. Dataset  

The Universal Mutation Database (UMD_TP53) at (https://p53.fr/TP53-database) provides a comprehensive 

representation of the TP53 gene structure, isoform diversity, mutation nomenclature, and sequence data from 

over 5,000 tumor samples across 12 cancer types. The dataset highlights mutations specifically affecting the 

TP53 beta and gamma isoforms. The UMD TP53 mutation database, spanning more than 80,400 columns, 

includes details on germline mutations, cell lines, and more. Figure 2 shows the details of the Universal 

Mutation Database (UMD_TP53).  missense mutations are the most common in the database, with 58,522 

entries, indicating a significant impact on protein function. Indels and nonsense mutations are also prevalent, 

likely disrupting gene expression, while splice site and synonymous mutations are less common. Rare 

mutation types are minimal, with only 250 entries. This study focuses on mutations in codons 248 and 249. 

The target data comprises 5,120 records specifically within this domain, representing a dataset reduction at 

the row level. Additionally, the TP53 dataset includes information on mutations in codons 248 and 249, along 

with indications of whether the cells were cancerous or precancerous. 

 

 
Figure 2: Universal Mutation Database (UMD_TP53) 
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B. Data Preprocessing 
The dataset was cleaned by addressing missing values and removing duplicate entries. Data normalization was 

employed to ensure comparability across features for subsequent analyses.  

C. Feature Selection: 

A sequence of genetic and molecular changes across several features identifies the mutation. This research is run 

in tracks, first track employs eight features, while the second one employs thirty-three features.  The eight input 

set features are Start_cdna, EndcDNA, Genome base coding, cDNA variant, Mutant AA-1, Mutant AA-3, Mutant 

codon, and sample original. Thirty-three features are selected as the following: cDNA position ( Start_cDNA, 

End_cDNA), the Genome Base Coding,  cDNA Variant, and Codon position using TP53 alpha. Also, Mutant 

AA_1 (Mutant amino acid: 1-letter nomenclature), Mutant AA_3 (Mutant amino acid: 3-letter nomenclature), 

Base_Change_Size, Wild Type Codon, Mutant Codon, Mutational_Event, Mutation Type, CpG, Py-Py Doublets, 

Variant Type. Other features as, Disease, Sample pathology, Complexity, and records number. Features refer to 

the tumor status as Leukaemia_State, Solid Status, Tumor Status Cell line State, Somatic State, Germline_Stat.  

Tumor Repetition, and Publication_Repetition, Sift_Score, Mutassessor_score, Polyphen, 

MutPred_Splice_General_Score, PCA_Outliers, PCA_score. Those are selected according to the heatmap that 

works as an indicator for the important features.  The data is split to train, test, and validate as the following 60%, 

20%, and 20%. 

D. Model implementation 

The system is evaluated in two steps: after data processing and feature selection, splitting, the performance of 

different algorithms—Artificial Neural Network (ANN), Decision Tree (DT), K-Nearest Neighbors (KNN), and 

Convolutional Neural Network (CNN)—is assessed in terms of accuracy, sensitivity, and specificity on codons 

248, 249, and a combined dataset of codons 248 and 249. Each model’s performance is evaluated twice, based on 

eight features and thirty-three features. The best-performing model is DT. So, it is reevaluated by combining it 

with the XGBoost deep learning algorithm to enhance performance. Figure 3 shows the block diagram of the 

Model. 

The decision tree is used machine learning model that classifies or predicts outcomes by splitting data into 

branches based on feature values[28]. It structures decision-making in a tree-like format, where each internal node 

represents a decision rule, each branch represents an outcome of the decision, and each leaf node represents a final 

classification or prediction. Decision trees are intuitive and interpretable, as the sequence of splits mirrors human 

decision-making processes[29]. They are effective for handling numerical and categorical data and can capture 

complex feature interactions. However, decision trees can be prone to overfitting, especially with deep trees, 

which may capture noise rather than underlying patterns[30]. XGBoost, or Extreme Gradient Boosting, is a highly 

efficient and scalable machine learning algorithm, particularly well-suited for structured or tabular data. It operates 

as an ensemble learning method, where multiple decision trees are sequentially built to minimize prediction errors. 

Unlike traditional boosting methods, XGBoost employs a more optimized implementation with features like 

regularization (to prevent overfitting), parallel processing, and handling of missing values. These enhancements 

enable it to deliver high accuracy, often outperforming other algorithms in classification and regression tasks. 

XGBoost has become widely used in competitive machine learning, due to its speed and predictive power, making 

it a top choice for complex data challenges across various domains, including finance, biology, and marketing[31]. 

The measurements are calculated in terms of accuracy, Sensitivity, precision, and it is calculated as  

 

Accuracy =  (TN +  TP) / (TN +  FP +  FN +  TP)   
Sensitivity =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁).  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃).  
 

Where True Positives (TP) = The number of correctly identified positive cases, and False Negatives (FN) = The 

number of positive cases incorrectly identified as negative. 
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Figure 3: Flow diagram for the proposed models. 

 

 

Table 1: The initial parameters for the Convolutional Neural Network and Artificial Neural Network 

Parameter CNN ANN 

Input Neurons 128*3 10 

Hidden Layers 64*3  - 32*3 – 16*3 6 

Output Neurons 1 1 

Activation Function ReLU ReLU 

Learning Rate 0.001 0.001 

Epochs 200 200 

Optimizer Adam Adam 

 
Table 1 shows the initial parameters (Input Neurons, Hidden Layers, Output, Neurons, Activation Function, 

Learning Rate, Epochs, and Optimizer) of the CNN and ANN that are adjusted for this study. For the KNN 

classifier, the number of neighbors is adjusted to 7. The Decision Tree model used as the base learner in the 

XGBoost ensemble was configured with a carefully selected set of hyperparameters to optimize performance. The 

maximum tree depth, set to 1, restricts the model’s complexity to prevent overfitting while maintaining 

interpretability. The learning rate was set to 0.3, allowing the model to make incremental updates that contribute 

to stable convergence. A gamma value of 0 was selected, indicating no minimum loss reduction requirement for 

split formation, thus allowing splits based on impurity alone. The minimum child weight parameter was assigned 

a value of 1, ensuring that a minimum level of observation weight is required to form a new leaf node, which 

controls model complexity. 

 

IV. RESULTS AND DISCUSSION 

Figure 3 represents the performance measurements —accuracy, sensitivity, and specificity—for various 

models (Artificial Neural Network (ANN), Decision Tree (DT), K-Nearest Neighbors( KNN), Convolutional 

Neural Network (CNN)) on codons 248, 249, and a combined dataset of codons 248 and 249. Each model 

performance is evaluated based on eight features. 

 

For codon 248, the models show varying levels of performance: (ANN) indicates moderate performance with 

slightly higher specificity. (DT) demonstrates the highest performance among the models, with 82% accuracy, 

79% sensitivity, and 86% specificity. (KNN) has similar accuracy (77%) but slightly lower sensitivity (71%) and 

specificity (81%) compared to ANN. (CNN) performs the best in this group with 84% accuracy as DT, 80% 

sensitivity, and 89% specificity, indicating balanced and robust performance across all metrics. 

For codon 249, ANN shows a slight reduction in performance compared to codon 248, with 75% accuracy, 

71% sensitivity, and 80% specificity. DT maintains higher measurements compared to ANN and KNN.  CNN 
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continues to perform well, with 82% accuracy, 79% sensitivity, and 83% specificity, although it falls slightly short 

of its performance on codon 248. 

 

When combining data from both codons (248 + 249), ANN improves overall accuracy (80%) and sensitivity 

(77%) compared to individual codons. KNN shows an improvement in sensitivity (77%) compared to codon 249 

alone, maintaining a specificity of 81%. CNN once again delivers the highest performance with 84% accuracy, 

80% sensitivity, and 89% specificity, solidifying its robustness when handling combined data. 

 

Figure 4 analysis shows the performance of the four machine learning algorithms—ANN, DT, KNN, and CNN 

—applied to datasets representing mutations at Codons 248 and 249, as well as a combined dataset of both codons, 

with a feature space of thirty-three attributes.  

 

For Codon 248, the Decision Tree (DT) algorithm exhibited the highest accuracy at 86%, with a sensitivity of 

82% and a specificity of 82%. This indicates robust performance in identifying true positives while maintaining 

a moderate level of specificity. For Codon 249, ANN displayed an accuracy of 77%, sensitivity of 72%, and 

specificity of 82%, showing a slightly improved specificity for Codon 248 compared to Codon 249. CNN 

performed on par with DT in terms of accuracy (83%) but achieved a slightly lower sensitivity (81%) and 

specificity (89%), making it a solid alternative depending on the specific requirements of sensitivity versus 

specificity.  KNN achieved an accuracy of 81% but slightly reduced sensitivity (71%) compared to DT and 

specificity at 88%, showing a balanced but slightly less sensitive performance.  

 

 
Figure 3: The performance (accuracy, sensitivity, specificity) for various models (Artificial Neural Network 

(ANN), Decision Tree (DT), K-Nearest Neighbors (KNN), Convolutional Neural Network (CNN)) for eight 

features for Codon a) 248, b) Codon 249, c) codons (248 and 249). 
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Figure 4: The performance (accuracy, sensitivity, specificity) for various models (Artificial Neural Network 

(ANN), Decision Tree (DT), K-Nearest Neighbors (KNN), Convolutional Neural Network (CNN)) for Thirty-

Three features for Codon a) 248, b) Codon 249, c) codons (248 and 249). 

 

 

 

Table 2: Performance of the XGBoost and the performance of the XGBoost+ Decision Tree  
XGBoost  XGBoost + DT 

Accuracy 93.15% 96.55% 

sensitivity 94% 98% 

specificity 92% 96% 

 

Combining data from Codons 248 and 249 creates a synergistic effect, amplifying performance across all 

models: CNN has an outstanding 90% accuracy, sensitivity of 86%, and specificity of 90%. K- KNN remains 

competitive with 86% accuracy, a slightly lower sensitivity of 77%, but a high specificity of 90%. The high 

specificity is indicative of KNN’s ability to avoid false positives, which may be advantageous in critical 

applications. ANN shows substantial improvement in the combined dataset. Decision Tree (DT) follows closely, 

maintaining an impressive 89% accuracy, sensitivity of 87%, and specificity of 90%. This analysis highlights that 

DT consistently outperforms other models, particularly in the combined dataset, suggesting that it best captures 

complex feature relationships. So, it was our candidate to improve its performance by the XGBoost algorithm.  

Table 2 shows the performance of the XGBoost algorithm both as a standalone model and in combination with 

the DT ensemble. These metrics provide a comprehensive view of the model's capability in terms of overall 

predictive accuracy, its ability to correctly identify positive cases (sensitivity), and its effectiveness in avoiding 

false positives (specificity).  The accuracy metric measures the model's overall success rate in making correct 

predictions and balancing in positive and negative cases.  Sensitivity, or recall, reflects the model's ability to 

identify positive cases correctly. This metric is critical in applications where correctly classifying positives is more 

important than negatives, such as in medical diagnoses. For the accuracy measurements, XGBoost alone Achieves 

an accuracy of 93.15%, indicating a high level of reliability in general classification tasks. This accuracy suggests 

that XGBoost is already adept at identifying patterns in the dataset, making it a strong standalone classifier. When 

combining XGBoost with a Decision Tree, the accuracy increases significantly to 96.55%.  

 

This improvement suggests a synergistic effect where the ensemble captures additional nuances in the data 

that XGBoost alone may not fully address. The 3.4% increase in accuracy underscores the effectiveness of this 
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ensemble approach, particularly in applications requiring a higher level of precision.  XGBoost Alone shows a 

sensitivity of 94%, demonstrating a strong ability to detect positive instances. This high sensitivity rate indicates 

that XGBoost is reliable in identifying true positives with minimal oversight. The sensitivity of the combination 

(XGBoost and Decision Tree Ensemble)  rises to 98% with the ensemble, marking a substantial 4% improvement. 

This near-perfect sensitivity suggests that the addition of the DT enables the model to capture a broader range of 

positive patterns, thereby minimizing false negatives. This characteristic is particularly advantageous in high-

stakes scenarios where missing positive cases could have serious consequences. Specificity measures the model's 

effectiveness in correctly identifying negative cases or its ability to minimize false positives. High specificity is 

essential in contexts where false positives must be reduced. 

 

To the best of our knowledge, no previous studies have combined codons 248 and 249 for precancer detection. 

Table 3 presents previous studies that employed deep learning techniques for mutation detection, and our proposed 

model outperformed them. the ANN model in the study [25] outperformed other approaches with 98% accuracy, 

while CNN and SVM also demonstrated strong but slightly lower accuracy rates. Each study emphasizes different 

machine-learning techniques and datasets, highlighting diverse approaches to mutation detection in cancer 

research. Abdullah Abdul [32] utilizes RNA-Seq datasets (highlights AK2 and CD68 as potential biomarkers and 

therapeutic targets for breast cancer), machine learning algorithms, and feature selection techniques to predict 

breast cancer prognosis and identify relevant biomarkers. Quadratic Discriminant Analysis (QDA) achieved the 

highest accuracy of 96%, outperforming Neural Networks, Random Forest, Linear SVM, and Logistic Regression, 

each with 91% accuracy. Davies et al[33], investigates the inefficiency of nucleotide excision repair (NER) in 

recognizing BPDE-DNA adducts by combining molecular dynamics and machine learning. A random forest 

model, trained on helical distortion data, achieved over 91% accuracy, identifying base pair rotation and regional 

GC content as key factors distinguishing repair hotspots and non-hotspots. 

 

Table 3: Comparison the DL models results with the relevant studies. 

Reference Dataset Model Accuracy 

Pre-cancer Diagnosis via 

TP53 Gene Mutations by 

Using Bioinformatics & 

Neural Network [34] 

http://p53.fr/TP53-

database/mutation-database 

“UMD TP53 Mutation 

Database” Oct, 2017 

Classification Using ANN  

Feed Forward Back Propagation 

Neural Network 

98% 

Deep convolutional neural 

networks for accurate 

somatic mutation 

detection[35] 

the European Nucleotide 

Archive  : https://www.ebi.ac.

uk/ena 

 

  

Classification Using 

CNN 

93.5% 

Evaluating machine 

learning methodologies for 

identification of cancer 

driver genes[36] 

https://www.uniprot.org/ Classification 

(SVM) 

 

91.0% 

 

 

ANN 87.2% 

Using machine learning 

algorithms to find novel 

biomarkers for breast 

cancer using RNA-seq 

dataset [32] 

RNA-Seq datasets Neural Networks, Random Forest, 

Linear SVM, and Logistic 

Regression. 

91% 

Quadratic Discriminant Analysis 

(QDA) 

96 % 

Utilizing biological 

experimental data and 

molecular dynamics for the 

classification of mutational 

hotspots through machine 

learning[33] 

helical data extracted from 

duplexes representing both 

BPDE hotspot and nonhotspot 

sites within the TP53 gene 

random forest model 91% 

 

The clinical applications and scalability of precancer detection based on TP53 mutations using AI hold immense 

potential for transforming healthcare. AI can enable early diagnosis by detecting TP53 mutations, allowing timely 

interventions that improve patient outcomes. It also facilitates personalized medicine by identifying mutation 

patterns that guide tailored treatment strategies, while serving as a prognostic tool to predict disease progression. 

http://p53.fr/tp53-database/mutation-database
http://p53.fr/tp53-database/mutation-database
https://www.ebi.ac.uk/ena
https://www.ebi.ac.uk/ena
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Furthermore, insights gained from TP53-related pathways can aid in developing targeted therapies for cancers 

with these mutations. The scalability of AI-driven detection makes it suitable for mass screening programs by 

analyzing large-scale datasets efficiently, reducing costs through automation, and democratizing access to 

advanced diagnostics, particularly in under-resourced areas [37]. Integrating AI tools into clinical workflows and 

electronic health records ensures seamless adoption by healthcare professionals. The real-world impact of these 

advancements includes reduced cancer mortality rates, better allocation of healthcare resources, and accelerated 

research into TP53 mutations, driving breakthroughs in cancer prevention and treatment. This AI-powered 

approach has the potential to revolutionize cancer care globally. 

 

CONCLUSION 
This study demonstrates the potential of deep learning techniques, particularly the integration of Decision Tree 

and XGBoost, for effective mutation detection in precancer classification. By combining codons 248 and 249, the 

proposed model achieves notable improvements in accuracy, sensitivity, and specificity, offering a reliable tool 

for early-stage cancer diagnosis. The optimized model not only enhances true positive and negative identification 

but also represents a significant advancement in leveraging mutation biomarkers for precancer detection, 

potentially guiding future diagnostic and therapeutic strategies targeting TP53-related cancers. 
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